sexta-feira, 17 de maio de 2019





difusão molecular, frequentemente chamada exemplo de fenômeno de transporte de matéria onde um soluto é transportado devido aos movimentos das moléculas de um fluido (líquido ou gás), pelo movimento térmico de todas as partículas a temperaturas acima do zero absoluto. Estes movimentos fazem com que, do ponto de vista macroscópico, o soluto passe das zonas mais elevadas de concentração para zonas de baixa concentração.
A difusão molecular de um solvente ocorre no sentido inverso, ou seja, de uma solução menos concentrada para uma solução mais concentrada. Quando esta difusão do solvente ocorre através de uma membrana semi-permeável é denominada de osmose. A solução menos concentrada é denominada hipotônica e a mais concentrada de hipertônica. Este processo de difusão do soluto ou solvente é extremamente importante na absorção de nutrientes pelas células, através da membrana celular. A difusão acontece até as duas soluções ficarem "isotônicas", isto é, com a mesma concentração.
A taxa deste movimento é uma função da temperatura, viscosidade do fluido e o tamanho (massa) das partículas, mas não é função da concentração. Difusão explica o fluxo líquido (o balanço) de moléculas de uma região de concentração mais alta para uma de concentração mais baixa, mas é importante se notar que difusão também ocorre onde não existe um gradiente de concentração.O resultado da difusão é uma gradual mistura de materiais. Em uma fase com temperatura uniforme, ausência de forças externas líquidas atuando sobre as partículas, o processo de difusão acabará por resultar em mistura completa.
A difusão molecular é tipicamente descrita matematicamente usando-se as leis de Fick da difusão.

    Classificações[editar | editar código-fonte]

    Para efeitos de classificação, e dos equacionamentos específicos, a difusão é dividida quanto à homogeneidade ou heterogeneidade das espécies em difusão como autodifusão, quando a difusão se dá entre átomos de mesma espécie (como entre seus isótopos) e interdifusão, quando a difusão se dá entre átomos de espécies diferentes.
    Exemplificando: quando se tem duas misturas gasosas, consideradas a mesma pressão e temperatura, formadas apenas de hidrogênio prótio e seu isótopo mais pesado, com um nêutron a mais no núcleo, deutério, mas de composições destes diferentes, e que são colocadas em contato, a difusão dos isótopos na mistura trata-se de autodifusão.
    Quando temos carbono em liga de ferro, e este migra para outra parte da liga com menor concentração de carbono, como os átomos são de diferentes elementos, de núcleos de diferentes números de prótons, trata-se de interdifusão.

    Aplicações[editar | editar código-fonte]

    Difusão é de importância fundamental em muitas disciplinas de física, química e biologia. Alguns exemplos de aplicações da difusão são:

    Significância[editar | editar código-fonte]

    Representação esquemática da mistura de duas substâncias por difusão.
    Difusão é parte dos fenômenos de transportes. Dos mecanismos de transporte de massa, a difusão molecular é conhecida como a mais lenta.

    Em Biologia[editar | editar código-fonte]

    Em biologia celular, difusão é a principal forma de transporte para materiais necessários tais como aminoácidos no interior das células.[1] A difusão de água (H2O) através de uma parcialmente permeável membrana é classificada como osmose.
    metabolismo e a respiração dependem, em parte, da difusão, além de processos em massa ou ativos. Por exemplo, nos alvéolos de pulmões de mamíferos, devido à diferenças em pressões parciais através da membrana dos capilares do alvéolo, o oxigênio difunde-se no sangue e o dióxido de carbono difunde-se para o exterior. Pulmões possuem uma grande área de superfície para facilitar este processo de troca gasosa.

    Difusão de marcador e química[editar | editar código-fonte]

    Autodifusão, exemplificada com um marcador isotópico do isótopo radioativo 22Na.
    Exemplo de difusão química (clássica, de Fick, ou de Fickian) de cloreto de sódio em água.
    Fundamentalmente, dois tipos de difusão são distinguidos:
    • Difusão de marcador, a qual é uma mistura espontânea de moléculas tomando lugar na ausência de gradiente de concentração (ou potencial químico). Este tipo de difusão pode ser acompanhado usando-se marcadores isotópicos, daí seu nome. A difusão do marcador normalmente é assumido como sendo idêntico a autodifusão(assumindo-se que não há significativo efeito isotópico). Esta difusão pode ocorrer sob equilíbrio.
    • Difusão química ocorre na presença de gradiente de concentração (ou potencial químico) e resulta no transporte de massa em balanço, líquido. Esta difusão é sempre um processo em não equilíbrio, aumentando a entropia do sistema, e conduz o sistema mais próximo do equilíbrio.
    Os coeficientes de difusão para estes dois tipos de difusão são geralmente diferentes porque o coeficiente de difusão para difusão química é binário e inclui os efeitos devido à correlação do movimento de diferentes espécies em difusão.

    Sistemas em não equilíbrio[editar | editar código-fonte]

    Ilustração de baixa entropia (topo) e alta entropia (abaixo)
    Porque difusão química é um processo de transporte em balanço, o sistema no qual ele toma lugar é um sistema em equilíbrio(i.e. não está em repouso até o momento). Muitos resultados na termodinâmica clássica não são facilmente aplicados a sistemas em desequilíbrio (não em equilíbrio). No entanto, há vezes em que ocorrem os chamados estados quase-estacionários, onde o processo de difusão não muda no tempo, onde os resultados clássicos podem aplicar-se localmente. Como o nome sugere, este processo não é um verdadeiro equilíbrio dado que o sistema ainda está evoluindo.
    Sistemas fluidos em desequilíbrio podem podem ser modelados com sucesso com a hidrodinâmica flutuante de Landau-Lifshitz. Neste quadro teórico, a difusão é devida às flutuações cujas dimensões variam de escala molecular à escala macroscópica.[2]
    Difusão química aumenta a entropia do sistema, i.e. difusão é um processo espontâneo e irreversível. As partículas podem espalhar-se por difusão, mas não de forma espontânea reporganizar-se (ausência de alterações no sistema, assumindo que não há criação de novas ligações químicas, e de ausência de forças externas atuando sobre as partículas).

    Um experimento para demonstrar difusão[editar | editar código-fonte]

    A difusão não é fácil de se observar, porque outros fenômenos de transporte, especialmente a convecção, são mais eficientes em escalas de comprimento acima de milímetros. Difusão é mais importante em escalas microscópicas.
    Difusão pode ser demonstrada com um tubo de vidro longo, papel, duas rolhas de cortiça, uma certa quantidade de algodão embebido em solução de amônia e alguns pedaços de papel de tornassol vermelho. Fixa-se o algodão numa das rolhas e diversos pedaços de papel harmoniosamente espaçados numa linha ou barbante preso na outra, por exemplo, com alfinetes. Arrolhando-se as duas extremidades do tubo de vidro com as rolhas e seus anexos, tomando-se o cuidado do fio com os papéis de tornassol se alongar pelo comprimento do tubo, e deitando o tubo na mesa (o que elimina a ação da gravidade), sem nenhuma agitação, pode-se observar que o papel de tornassol vermelho fica azulado.
    Isto ocorre porque as moléculas de amônia viajam por difusão da extremidade com mais alta concentração no algodão para a extremidade de mais baixa concentração no restante do tubo de vidro. Isso não significa que as partículas não se movimentam em outras direções, mas há um fluxo líquido (em balanço) da região de concentração mais alta para a região de concentração mais baixa. Como a solução de amônia é alcalina, o papel tornassol vermelho torna-se azul. Pela alteração da concentração de amônia, a taxa de mudança da cor dos papéis de tornassol pode ser alterada. Note-se que a taxa de difusão em si não é aumentada, mesmo quando existe um gradiente de concentração mais acentuado, pois não é função da concentração. O que é realmente maior é o fluxo.

    Difusão "coletiva" dependente da concentração[editar | editar código-fonte]

    Difusão coletiva é a difusão de um grande número de partículas, mais frequentemente num solvente.
    Ao contrário do movimento browniano, o qual é a difusão de uma única partícula, interseções entre partículas pode ter de ser considerada, a menos que as partículas formem uma mistura ideal com o seu solvente (condições de mistura ideal correspondem ao caso onde as interações entre o solvente e as partículas são idênticas às interações entre partículas e as interações entre as Moléculas do solvente, neste caso, as partículas não interagem quando no interior do solvente).
    No caso de uma mistura ideal, a equação de difusão da partícula mantém-se verdadeira e o coeficiente de difusão D, a velocidade de difusão na equação de difusão da partícula é independente da concentração da partícula. Em outros casos, resultando em interações entre partículas no solvente irão sofrer os seguintes efeitos:
    • O coeficiente de difusão D, na equação de difusão da partícula torna-se dependente da concentração. Para uma interação atrativa entre as partículas, o coeficiente de difusão tende a diminuir à medida que aumenta a concentração. Para uma interação repulsiva entre as partículas, o coeficiente de difusão tende a aumentar à medida que aumenta a concentração.
    • No caso de uma interação atrativa entre as partículas, as partículas apresentam uma tendência a se fundirem e formares clusters, se a sua concentração encontra-se acima de um certo limite. Isso é equivalente a uma reação química de precipitação (e se as partículas consideradas em difusão são moléculas químicas em solução, então é uma precipitação.

    Difusão molecular de gases[editar | editar código-fonte]

    Transporte de material em fluido estagnado ou através de linhas de fluxo de um fluido em fluxo laminar ocorre por difusão molecular. Duas compartimentos adjacentes, separados por partição contendo gases puros A e B podem ser previstos. Movimento aleatório de todas as moléculas de modo a que, após um período, moléculas são encontradas distante das suas posições originais. Se a partição é removida, algumas moléculas de A movem-se em direção à região ocupada por B, seu número depende do número de moléculas no ponto considerado. Simultaneamente, moléculas de B difundem-se para os regimes anteriormente ocupado por A puro.
    Finalmente, a mistura completa ocorre. Antes deste ponto no tempo, uma variação gradual na concentração de A ocorre ao longo do eixo, designado x, o qual une os compartimentos originais. Esta variação, expressa matematicamente -dCA/dx, onde CA é a concentração de A. O sinal negativo surge porque a concentração de A diminui à medida que a distância x aumenta. Similarmente, a variação na concentração de gás B é -dCB/dx. A taxa de difusão de A, NA, depende do gradiente de concentração a a velocidade média com a qual as moléculas de A movem-se na direção x. Esta relação é expressa pela lei de Fick
    x


    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde D é a difusividade de A em B, proporcional à velocidade molecular média e, portanto, dependente da temperatura e de pressão dos gases. A taxa de difusão NA, é geralmente expressa como o número de moles em difusão através de da unidade de área na unidade de tempo. Tal como acontece com a equação básica de transferência de calor, indica que a taxa de força é diretamente proporcional à força motriz, que é o gradiente de concentração.
    Esta equação básica é aplicada a diversas situações. Restringindo o debate exclusivamente para o estado de equilíbrio, em que nem dCA/dx ou dCB/dx altera-se com tempo, a contradifusão equimolecular é considerada primeiro.

    Contradifusão equimolecular[editar | editar código-fonte]

    Se nenhum fluxo massivo ocorre num elemento de comprimento dx (lembrando que trata-se de uma difusão, não de um deslocamento de massas de gás), as taxas de difusão de dois gases A e B devem ser iguais e opostas, o que é NA=NB.
    A pressão parcial de A altera-se por dPA na distância dx. Similarmente, a pressão parcial de B altera-se dPB. Como não existe diferença na pressão total através do elemento (nenhum fluxo massivo, embora possa haver uma alteração de densidade, exatamente pela alteração de composição), dPA/dx deve igualar-se a -dPB/dx. Para um gás ideal a pressão parcial é relacionada à concentração molar pela relação
    x


    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde nA é o número de moles de gás A em um volume V. Como a concentração molar CA é igual a nA/V portanto
    Consequentemente, para o gás A,
    x


    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    onde DAB é a difusividade de A em B. Similarmente,
    x


    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Portanto, permite que DAB=DBA=D. Se a pressão parcial de A em x1 é PA1 e x2 é PA2, integração da equação acima,
    x


    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Um equação similar pode ser derivada da contradifusão do gás B.








    OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.



    EM = ENERGIA E MASSA.

    SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI

    EM X SDC G.=

    EM =
    X


    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D








     VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.




    RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.

    [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




    mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


    um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

    o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

    O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


    Com isto pode-se dividir a física em quatro grandes fases:

    a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




    teoria da relatividade categorial Graceli

    ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D











    NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].